
Table of Contents
Process Pinning...1

Process/Thread Pinning Overview..1
Using SGI's dplace Tool for Pinning..4
Using Intel OpenMP Thread Affinity for Pinning..10
Using SGI MPT Environment Variables for Pinning..16
Using SGI omplace for Pinning..19
Using the mbind Tool for Pinning...24
Instrumenting your Fortran Code to Check Process/Thread Placement...................30

Process Pinning

Process/Thread Pinning Overview

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Summary: Pinning, the binding of a process or thread to a specific core, can improve the
performance of your code by increasing the percentage of local memory accesses.

Once your code runs and produces correct results on a system, the next concern is its
performance. For a code that uses multiple cores, the placement of processes and/or
threads can play a significant role in code performance.

Given a set of processor cores in a PBS job, the Linux kernel usually does a reasonably
good job of mapping processes/threads to physical cores (although the kernel may also
migrate processes/threads). Some OpenMP runtime libraries and MPI libraries may also
perform certain placements by default. In cases where the placements by the kernel or the
MPI or OpenMP libraries are suboptimal, you can try multiple methods to control the
placement in order to improve performance of your code. Using the same placement also
has the added benefit of reducing runtime variability from run to run.

You should pay attention to maximizing data locality while minimizing latency and resource
contention, and should have a clear understanding of the characteristics of your own code
and the machine that the code is running on.

Characteristics of NAS HECC Systems

Pleiades and Columbia are two distinctly different types of systems.

Pleiades

Pleiades is a cluster system consisting of four different processor types -- Harpertown,
Nehalem, Westmere, and Sandy Bridge, with a total of 11,776 nodes. On Pleiades, memory
on each node is accessible and shared only by processes/threads running on that node.

Process Pinning 1

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

A Harpertown node is a symmetric memory system where all 8 cores have equal access to
the memory on the node, so data locality is not an issue.

On the other hand, a Nehalem-EP, Westmere, or Sandy Bridge node contains two sockets.
Within each socket is a symmetric memory system. Accessing memory across the two
sockets is through the Quick Path Interconnect and these nodes are considered
non-uniform memory access (NUMA) systems. So,for optimal performance, data locality
should not be overlooked on these three processor types.

Overall, compared to a global shared-memory NUMA system such as Columbia, data
locality is less of a concern on Pleiades. Rather, minimizing latency and resource
contention will be the main focus when pinning processes/threads on Pleiades.

For more information on Pleiades and these processors, see Pleiades Configuration
Details, which has links to each of the processor types.

Columbia

Columbia comprises 4 hosts (C21-24). Each host is a NUMA system that contains
hundreds of nodes with memory located physically at various distances from the processors
accessing data on memory. A process/thread can access the local memory on its node, as
well as the remote memory across nodes through the NUMAlink, with varying latencies. So,
data locality is critical for getting good performance on Columbia.

One good practice to follow when developing an application is to initialize data in parallel,
such that each processor core initializes data that it is likely to access later for calculation.

For more information about Columbia, see Columbia Configuration Details.

Methods for Process/Thread Pinning

Several pinning approaches for OpenMP, MPI and MPI+OpenMP hybrid applications are
listed below. We recommend using the Intel compiler (and its runtime library) and the SGI
MPT software on NAS systems, so most of the approaches pertain specifically to them. On
the other hand, the mbind tool works for multiple OpenMP libraries and MPI environments.

OpenMP codes

Using Intel OpenMP Thread Affinity for Pinning♦

Using SGI's omplace Tool for Pinning♦
Using the mbind Tool for Pinning♦

•

MPI codes•

Process/Thread Pinning Overview 2

Setting SGI MPT Environment Variables♦

Using SGI's omplace Tool for Pinniing♦
Using the mbind Tool for Pinning♦

MPI+OpenMP hybrid codes

Using SGI's omplace Tool for Pinning♦
Using the mbind Tool for Pinning♦

•

Checking Process/Thread Placement

Each of the approaches listed above provides some verbose capability to print out the tool's
placement results. In addition, you can check the placement using the following
approaches:

ps Command

ps -C executable_name -L -opsr,comm,time,pid,ppid,lwp
In the output generated, use the core ID under the PSR column, the process ID under the
PID column, and the thread ID under the LWP column to see where the processes and/or
threads are placed on the cores.

Note that the ps command provides a snapshot of the placement at that specific time. You
may need to monitor the placement from time to time to make sure that the
processes/threads do not migrate.

Instrument your code to

Call the mpi_get_processor_name function, to get the name of the processor an
MPI process is running on

•

Call the Linux C function sched_getcpu() to get the processor number the
process or thread is running on

•

For more information, see Instrumenting your Fortran Code to Check Process/Thread
Placement.

Process/Thread Pinning Overview 3

Using SGI's dplace Tool for Pinning

Summary: The dplace tool binds processes/threads to specific processor cores to
improve your code performance. For an introduction to pinning at NAS, see Process/Thread
Pinning Overview.

The SGI dplace tool binds processes/threads to specific processor cores. Once pinned,
the processes/threads do not migrate. This can improve the performance of your code by
increasing the percentage of local memory accesses.

dplace invokes a kernel module to create a job placement container consisting of all (or a
subset of) the CPUs of the cpuset. In the current dplace version 2, an LD_PRELOAD
library (libdplace.so) is used to intercept calls to the functions fork(), exec(), and
pthread_create() to place tasks that are being created. Note that tasks created internal
to glib are not intercepted by the preload library. These tasks will not be placed. If no
placement file is being used, then the dplace process is placed in the job placement
container and (by default) is bound to the first CPU of the cpuset associated with the
container.

Syntax

dplace [-e] [-c cpu_numbers] [-s skip_count] [-n process_name] \
 [-x skip_mask] [-r [l|b|t]] [-o log_file] [-v 1|2] \
 command [command-args]
dplace [-p placement_file] [-o log_file] command [mpiexec -np4 a.out]
dplace [-q] [-qq] [-qqq]

As illustrated above, dplace "execs" command (in this case, without its mpiexec
arguments), which executes within this placement container and continues to be bound to
the first CPU of the container. As the command forks child processes, they inherit the
container and are bound to the next available CPU of the container.

If a placement file is being used, then the dplace process is not placed at the time the job
placement container is created. Instead, placement occurs as processes are forked and
executed.

Options for dplace

Explanations for some of the options are provided below. For additional information, see
man dplace on either Pleiades or Columbia.

Using SGI's dplace Tool for Pinning 4

-e and -c cpu_numbers

-e determines exact placement. As processes are created, they are bound to CPUs in the
exact order specified in the CPU list. CPU numbers may appear multiple times in the list.

A CPU value of "x" indicates that binding should not be done for that process. If the end of
the list is reached, binding starts over again at the beginning of the list.

-c cpu_numbers specifies a list of CPUs, optionally strided CPU ranges, or a striding
pattern. For example:

-c 1•
-c 2-4 (equivalent to -c 2,3,4)•
-c 12-8 (equivalent to -c 12,11,10,9,8)•
-c 1,4-8,3•
-c 2-8:3 (equivalent to -c 2,5,8)•
-c CS•
-c BT•

NOTE: CPU numbers are not physical CPU numbers. They are logical CPU numbers that
are relative to the CPUs that are in the allowed set, as specified by the current cpuset.

A CPU value of "x" (or *), in the argument list for the -c option, indicates that binding
should not be done for that process. The value "x" should be used only if the -e option is
also used.

Note that CPU numbers start at 0.

For striding patterns, any subset of the characters (B)lade, (S)ocket, (C)ore, (T)hread may
be used; their ordering specifies the nesting of the iteration. For example, SC means to
iterate all the cores in a socket before moving to the next CPU socket, while CB means to
pin to the first core of each blade, then the second core of every blade, and so on.

For best results, use the -e option when using stride patterns. If the -c option is not
specified, all CPUs of the current cpuset are available. The command itself (which is
"execed" by dplace) is the first process to be placed by the -c cpu_numbers.

Without the -e option, the order of numbers for the -c option is not important.

-x skip_mask

Provides the ability to skip placement of processes. The skip_mask argument is a
bitmask. If bit N of skip_mask is set, then the N+1th process that is forked is not placed.
For example, setting the mask to 6 prevents the second and third processes from being

Using SGI's dplace Tool for Pinning 5

placed. The first process (the process named by the command) will be assigned to the first
CPU. The second and third processes are not placed. The fourth process is assigned to the
second CPU, and so on. This option is useful for certain classes of threaded applications
that spawn a few helper processes that typically do not use much CPU time.

-s skip_count

Skips the first skip_count processes before starting to place processes onto CPUs. This
option is useful if the first skip_count processes are "shepherd" processes used only for
launching the application. If skip_count is not specified, a default value of 0 is used.

-q

Lists the global count of the number of active processes that have been placed (by
dplace) on each CPU in the current cpuset. Note that CPU numbers are logical CPU
numbers within the cpuset, not physical CPU numbers. If specified twice, lists the current
dplace jobs that are running. If specified three times, lists the current dplace jobs and the
tasks that are in each job.

-o log_file

Writes a trace file to log_file that describes the placement actions that were made for
each fork, exec, etc. Each line contains a time-stamp, process id:thread number, CPU that
task was executing on, taskname and placement action. Works with version 2 only.

Examples of dplace Usage

For OpenMP Codes

#PBS -lselect=1:ncpus=8

#With Intel compiler versions 10.1.015 and later,
#you need to set KMP_AFFINITY to disabled
#to avoid the interference between dplace and
#Intel's thread affinity interface.

setenv KMP_AFFINITY disabled

#The -x2 option provides a skip map of 010 (binary 2) to
#specify that the 2nd thread should not be bound. This is
#because under the new kernels (including the ones used on
#Pleiades and Columbia), the master thread (first thread)
#will fork off one monitor thread (2nd thread) which does
#not need to be pinned.

Using SGI's dplace Tool for Pinning 6

#On Pleiades, if the number of threads is less than
#the number of cores, choose how you want
#to place the threads carefully. For example,
#the following placement is good on Harpertown
#but not good on other Pleiades processor types:

dplace -x2 -c 2,1,4,5 ./a.out

To check the thread placement, you can add the -o option to create a log:

dplace -x2 -c 2,1,4,5 -o log_file ./a.out
Or use the following command on the running host while the job is still running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp > placement.out

Sample Output of log_file

timestamp process:thread cpu taskname| placement action
15:32:42.196786 31044 1 dplace | exec ./openmp1, ncpu 1
15:32:42.210628 31044:0 1 a.out | load, cpu 1
15:32:42.211785 31044:0 1 a.out | pthread_create thread_number 1, ncpu -1
15:32:42.211850 31044:1 - a.out | new_thread
15:32:42.212223 31044:0 1 a.out | pthread_create thread_number 2, ncpu 2
15:32:42.212298 31044:2 2 a.out | new_thread
15:32:42.212630 31044:0 1 a.out | pthread_create thread_number 3, ncpu 4
15:32:42.212717 31044:3 4 a.out | new_thread
15:32:42.213082 31044:0 1 a.out | pthread_create thread_number 4, ncpu 5
15:32:42.213167 31044:4 5 a.out | new_thread
15:32:54.709509 31044:0 1 a.out | exit

Sample Output of placement.out

PSR COMMAND TIME PID PPID LWP
 1 a.out 00:00:02 31044 31039 31044
 0 a.out 00:00:00 31044 31039 31046
 2 a.out 00:00:02 31044 31039 31047
 4 a.out 00:00:01 31044 31039 31048
 5 a.out 00:00:01 31044 31039 31049

Note that Intel OpenMP jobs use an extra thread that is unknown to the user and it does not
need to be placed. In the above example, this extra thread (31046) is running on core
number 0.

For MPI Codes Built with SGI's MPT Library

Using SGI's dplace Tool for Pinning 7

With SGI's MPT, only 1 shepherd process is created for the entire pool of MPI processes,
and the proper way of pinning using dplace is to skip the shepherd process.

Here is an example for Columbia:

#PBS -l ncpus=8
....
 mpirun -np 8 dplace -s1 -c 0-7 ./a.out
or
 mpiexec -np 8 dplace -s1 -c 0-7 ./a.out

On Pleiades, if the number of processes in each node is less than the number of cores in
that node, choose how you want to place the processes carefully. For example, the
following placement works well on Harpertown nodes, but not on other Pleiades processor
types:

#PBS -l select=2:ncpus=8:mpiprocs=4
...
mpiexec -np 8 dplace -s1 -c 2,4,1,5 ./a.out

To check the placement, you can set MPI_DSM_VERBOSE, which prints the placement in
the PBS stderr file:

#PBS -l select=2:ncpus=8:mpiprocs=4
...
setenv MPI_DSM_VERBOSE
mpiexec -np 8 dplace -s1 -c 2,4,1,5 ./a.out

Output in PBS stderr File

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r75i2n13 1
 1 1 yes r75i2n13 2
 2 2 yes r75i2n13 4
 3 3 yes r75i2n13 5
 4 0 yes r87i2n6 1
 5 1 yes r87i2n6 2
 6 2 yes r87i2n6 4
 7 3 yes r87i2n6 5

If you use the -o log_file flag of dplace, the CPUs where the processes/threads are
placed will be printed, but the node names are not printed.

#PBS -l select=2:ncpus=8:mpiprocs=4
....
mpiexec -np 8 dplace -s1 -c 2,4,1,5 -o log_file ./a.out

Using SGI's dplace Tool for Pinning 8

Output in log_file

timestamp process:thread cpu taskname | placement action
15:16:35.848646 19807 - dplace | exec ./new_pi_mpt126, ncpu -1
15:16:35.877584 19807:0 - a.out | load, cpu -1
15:16:35.878256 19807:0 - a.out | fork -> pid 19810, ncpu 1
15:16:35.879496 19807:0 - a.out | fork -> pid 19811, ncpu 2
15:16:35.880053 22665:0 - a.out | fork -> pid 22672, ncpu 2
15:16:35.880628 19807:0 - a.out | fork -> pid 19812, ncpu 4
15:16:35.881283 22665:0 - a.out | fork -> pid 22673, ncpu 4
15:16:35.882536 22665:0 - a.out | fork -> pid 22674, ncpu 5
15:16:35.881960 19807:0 - a.out | fork -> pid 19813, ncpu 5
15:16:57.258113 19810:0 1 a.out | exit
15:16:57.258116 19813:0 5 a.out | exit
15:16:57.258215 19811:0 2 a.out | exit
15:16:57.258272 19812:0 4 a.out | exit
15:16:57.260458 22672:0 2 a.out | exit
15:16:57.260601 22673:0 4 a.out | exit
15:16:57.260680 22674:0 5 a.out | exit
15:16:57.260675 22671:0 1 a.out | exit

For MPI Codes Built with MVAPICH2 Library

With MVAPICH2, 1 shepherd process is created for each MPI process. You can use ps -L
-u your_userid on the running node to see these processes. To properly pin MPI
processes using dplace, you cannot skip the shepherd processes and must use the
following:

mpiexec -np 4 dplace -c2,4,1,5 ./a.out

Using SGI's dplace Tool for Pinning 9

Using Intel OpenMP Thread Affinity for Pinning

Columbia Phase Out:

As of Feb. 8, 2013, the Columbia21 node has been taken offline as part of the Columbia
phase out process. Columbia22-24 are still available. If your script requires a specific node,
please make the appropriate changes in order to ensure the success of your job.

Summary: The Intel compiler's OpenMP runtime library has the ability to bind OpenMP
threads to physical processing units. Depending on the system (machine) topology,
application, and operating system, thread affinity can have a dramatic effect on the code
performance. For most OpenMP codes, type=scatter would provide the best
performance, as it minimizes cache and memory bandwidth contention for Nehalem-EP,
Westmere, and Sandy Bridge. For Harpertown, using an explicit proclist should give the
best performance.

Recommended Approaches

Two approaches are recommended for using the Intel OpenMP thread affinity capability:

Use the KMP_AFFINITY Environment Variable

The thread affinity interface is controlled using the KMP_AFFINITY environment variable.

Syntax

For csh and tcsh:

setenv KMP_AFFINITY [<modifier>,...]<type>[,<permute>][,<offset>]
For sh, bash,and ksh:

export KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

Use the Compiler Flag -par-affinity Compiler Option

Starting with the Intel compiler version 11.1, thread affinity can also be specified through
the compiler option -par-affinity. The use of -openmp or -parallel is required in
order for this option to take effect. This option overrides the environment variable when both
are specified. See man ifort for more information.

Using Intel OpenMP Thread Affinity for Pinning 10

http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html
http://www.nas.nasa.gov/hecc/support/kb/news/Columbia-Phase-Out-Process-Has-Begun_94.html

Syntax

-par-affinity=[<modifier>,...]<type>[,<permute>][,<offset>]
For both of these approaches, type is the only required argument, and it indicates the type
of thread affinity to use. Descriptions of the arguments (type, modifier, permute, and
offset) can be found on Intel's Thread Affinity Interface web page.

Note: Intel compiler versions 11.1 and later are recommended, as some of the affinity
methods described below are not supported in earlier versions.

Possible Values of type

Possible values for type are:

type = none (default)

Does not bind OpenMP threads to particular thread contexts; however, if the operating
system supports affinity, the compiler still uses the OpenMP thread affinity interface to
determine machine topology. Specify KMP_AFFINITY=verbose,none to list a machine
topology map.

type = disabled

Specifying disabled completely disables the thread affinity interfaces. This forces the
OpenMP runtime library to behave as if the affinity interface was not supported by the
operating system. This includes implementations of the low-level API interfaces such as
kmp_set_affinity and kmp_get_affinity that have no effect and will return a
nonzero error code.

Additional information from Intel:

"The thread affinity type of KMP_AFFINITY environment variable defaults to none
(KMP_AFFINITY=none). The behavior for KMP_AFFINITY=none was changed in 10.1.015
or later, and in all 11.x compilers, such that the initialization thread creates a "full mask" of
all the threads on the machine, and every thread binds to this mask at startup time. It was
subsequently found that this change may interfere with other platform affinity mechanism,
for example, dplace() on SGI Altix machines. To resolve this issue, a new affinity type
disabled was introduced in compiler 10.1.018, and in all 11.x compilers
(KMP_AFFINITY=disabled). Setting KMP_AFFINITY=disabled will prevent the runtime
library from making any affinity-related system calls."

Using Intel OpenMP Thread Affinity for Pinning 11

http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm

type = compact

Specifying compact causes the threads to be placed as close together as possible. For
example, in a topology map, the nearer a core is to the root, the more significance the core
has when sorting the threads.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY=compact,verbose

for csh, tcsh
setenv KMP_AFFINITY compact,verbose

type = scatter

Specifying scatter distributes the threads as evenly as possible across the entire system.
Scatter is the opposite of compact.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY=scatter,verbose

for csh, tcsh
setenv KMP_AFFINITY scatter,verbose

type = explicit

Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have been
explicitly specified by using the proclist= modifier, which is required for this affinity type.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY="explicit,proclist=[0,1,4,5],verbose"

for csh, tcsh
setenv KMP_AFFINITY "explicit,proclist=[0,1,4,5],verbose"

For nodes that support hyper-threading (such as Nehalem-EP, Westmere, and Sandy Br),
you can use the granularity modifier to choose whether to pin OpenMP threads to
physical cores using granularity=core (the default) or pin to logical cores using

Using Intel OpenMP Thread Affinity for Pinning 12

granularity=fine or granularity=thread for the compact and scatter types.

For most OpenMP codes, type=scatter should provide the best performance, as it
minimizes cache and memory bandwidth contention for Nehalem-EP, Westmere, and
Sandy Bridge nodes. For Harpertown nodes, using an explicit proclist should give the
best performance.

Examples

The following examples illustrate the thread placement of an OpenMP job with four threads
on various platforms with different thread affinity methods. The variable
OMP_NUM_THREADS is set to 4:

for sh, ksh, bash
export OMP_NUM_THREADS=4

for csh, tcsh
setenv OMP_NUM_THREADS 4

The use of the verbose modifier is recommended, as it provides an output with the
placement.

Harpertown

Note that every two cores (indicated with same color) in Harpertown share L2 cache.

Four threads running on one node (eight physical cores) of Harpertown will get the
following thread placement:

setting of KMP_AFFINITY Processor id 0 2 4 6 1 3 5 7
compact,verbose thread id 0 1 2 3
scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,1,4,5],verbose" thread id 0 2 1 3

Nehalem-EP

Note that four physical cores (indicated with same color) in Nehalem-EP share the same L3
cache.

Four threads running on one node (eight physical cores and 16 logical cores due to
hyper-threading) of Nehalem-EP will get the following thread placement:

setting of KMP_AFFINITY Processor id 0,8 1,9 2,10 3,11 4,12 5,13 6,14 7,15

Using Intel OpenMP Thread Affinity for Pinning 13

granularity=core,compact,verbose thread id 0,1 2,3
granularity=core,scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,2,4,6],verbose" thread id 0 1 2 3
Note that with granularity=core, an OpenMP thread is pinned to a physical core, and is
allowed to float between the two logical cores associated with the physical core. For
example, with granularity=core,compact, both threads 0 and 1 are pinned to the
logical core set {0,8}. If you use granularity=fine,compact instead, thread 0 is pinned
to logical core 0 and thread 1 is pinned to logical core 8, respectively.

Westmere

Note that six physical cores (indicated with same color) in Westmere share the same L3
cache.

Four threads running on 1 node (12 physical cores and 24 logical cores due to
hyper-threading) of Westmere will get the following thread placement:

setting of KMP_AFFINITY Processor
id 0,121,132,143,154,165,176,187,198,209,2110,2211,23

granularity=core,compact,verbose thread id 0,1 2,3
granularity=core,scatter,verbose thread id 0 2 1 3
"explicit,proclist=[0,3,6,9],verbose"thread id 0 1 2 3

Sandy Bridge

As seen in the configuration diagram of a Sandy Bridge node, each set of eight physical
cores in a socket share the same L3 cache.

Four threads running on 1 node (16 physical cores and 32 logical cores due to
hyper-threading) of Sandy Bridge will get the following thread placement:

Columbia

Each Columbia host has hundreds of cores. Based on the number of cores requested by
the PBS job, a cpuset is created with the requested number of cores. Depending on
availability, PBS may not be able to allocate consecutive cores to a job.

There are two cores per node (indicated with same color, below) on Columbia21, while

Using Intel OpenMP Thread Affinity for Pinning 14

http://www.nas.nasa.gov/kb_upload/image/kb285_sandybridge_1030881.png

there are four cores per node on C22-24. In the following example, 8 consecutive cores
(cores 4-11) are allocated on Columbia21.

Four threads running on 8 cores of Columbia21 will get the following thread placement:

setting of KMP_AFFINITY Processor id 4 5 6 7 8 9 10 11
compact,verbose thread id 0 1 2 3
scatter,verbose thread id 0 1 2 3
"explicit,proclist=[5,7,9,11],verbose" thread id 0 1 2 3

Using Intel OpenMP Thread Affinity for Pinning 15

Using SGI MPT Environment Variables for Pinning

Summary: For MPI codes built with SGI's MPT libraries, one way to control pinning is to set
certain MPT memory placement environment variables. For an introduction to pinning at
NAS, see Process/Thread Pinning Overview.

MPT Environment Variables

Here are the MPT memory placement environment variables:

MPI_DSM_VERBOSE

Directs MPI to display a synopsis of the NUMA and host placement options being used at
run time to the standard error file.

Default: not enabled

The setting of this environment variable is ignored if MPI_DSM_OFF is also set.

MPI_DSM_DISTRIBUTE

Activates NUMA job placement mode. This mode ensures that each MPI process gets a
unique CPU and physical memory on the node with which that CPU is associated.
Currently, the CPUs are chosen by simply starting at relative CPU 0 and incrementing until
all MPI processes have been forked.

SGI defaults:

off for MPT.1.25•
on for MPT.1.26, MPT.2.0.1, MPT.2.0.4, MPT.2.0.6•

NAS local defaults:

off for PBS jobs using Harpertown nodes•
on for PBS jobs using Nehalem, Westmere, and Sandy Bridge nodes•
on for PBS jobs on Columbia•

WARNING: Under most situations, it is a bad practice to set this environment variable for
running on the Harpertown nodes. For the Nehalem and Westmere nodes, it is
recommended that you do not set this environment variable if the nodes are not fully
populated with MPI processes. This is because the CPUs are chosen sequentially from
relative CPU 0.

Using SGI MPT Environment Variables for Pinning 16

The setting of this environment variable is ignored if MPI_DSM_CPULIST is also set or if
dplace or omplace is used.

MPI_DSM_CPULIST

Specifies a list of CPUs on which to run an MPI application, excluding the shepherd
process(es) and mpirun. The number of CPUs specified should equal the number of MPI
processes (excluding the shepherd process) that will be used.

Syntax and examples for the list:

Use a comma and/or hyphen to provide a delineated list:

place MPI processes ranks 0-2 on CPUs 2-4
and ranks 3-5 on CPUs 6-8
setenv MPI_DSM_CPULIST "2-4,6-8"

•

Use a "/" and a stride length to specify CPU striding:

Place the MPI ranks 0 through 3 stridden
on CPUs 8, 10, 12, and 14
setenv MPI_DSM_CPULIST 8-15/2

•

Use a colon to separate CPU lists of multiple hosts:

Place the MPI processes 0 through 7 on the first host
on CPUs 8 through 15. Place MPI processes 8 through 15
on CPUs 16 to 23 on the second host.
setenv MPI_DSM_CPULIST 8-15:16-23

•

Use a colon followed by allhosts to indicate that the prior list pattern applies to all
subsequent hosts/executables:

Place the MPI processes onto CPUs 0, 2, 4, 6 on all hosts
setenv MPI_DSM_CPULIST 0-7/2:allhosts

•

Examples

An MPI job requesting 2 nodes on Pleiades and running 4 MPI processes per node will get
the following placements, depending on the environment variables set:

#PBS -lselect=2:ncpus=8:mpiprocs=4
module load <a_mpt_module>
setenv
cd $PBS_O_WORKDIR
mpiexec -np 8 ./a.out

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_DISTRIBUTE

•

Using SGI MPT Environment Variables for Pinning 17

MPI: DSM information
MPI: MPI_DSM_DISTRIBUTE enabled
grank lrank pinning node name cpuid
 0 0 yes r86i3n5 0
 1 1 yes r86i3n5 1
 2 2 yes r86i3n5 2
 3 3 yes r86i3n5 3
 4 0 yes r86i3n6 0
 5 1 yes r86i3n6 1
 6 2 yes r86i3n6 2
 7 3 yes r86i3n6 3

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6

MPI: WARNING MPI_DSM_CPULIST CPU placement spec list is too short.
MPI: MPI processes on host #1 and later will not be pinned.
MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r22i1n7 0
 1 1 yes r22i1n7 2
 2 2 yes r22i1n7 4
 3 3 yes r22i1n7 6
 4 0 no r22i1n8 0
 5 1 no r22i1n8 0
 6 2 no r22i1n8 0
 7 3 no r22i1n8 0

•

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6:0,2,4,6

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r13i2n12 0
 1 1 yes r13i2n12 2
 2 2 yes r13i2n12 4
 3 3 yes r13i2n12 6
 4 0 yes r13i3n7 0
 5 1 yes r13i3n7 2
 6 2 yes r13i3n7 4
 7 3 yes r13i3n7 6

•

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6:allhosts

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r13i2n12 0
 1 1 yes r13i2n12 2
 2 2 yes r13i2n12 4
 3 3 yes r13i2n12 6
 4 0 yes r13i3n7 0
 5 1 yes r13i3n7 2
 6 2 yes r13i3n7 4
 7 3 yes r13i3n7 6

•

Using SGI MPT Environment Variables for Pinning 18

Using SGI omplace for Pinning

Summary: The omplace wrapper script pins processes and threads for better
performance. It works with SGI MPT, Intel MPI, and hybrid MPI/OpenMP applications.

SGI's omplace is a wrapper script for dplace. It provides an easier syntax than dplace
for pinning processes and threads. omplace works with SGI MPT as well as with Intel MPI.
In addition to pinning pure MPI or pure OpenMP applications, omplace can also be used
for pinning hybrid MPI/OpenMP applications.

A few issues with omplace to keep in mind:

dplace and omplace do not work with Intel compiler versions 10.1.015 and
10.1.017. Use the Intel compiler version 11.1 or later, instead

•

To avoid interference between dplace/omplace and Intel's thread affinity
interface, set the environment variable KMP_AFFINITY to disabled or set
OMPLACE_AFFINITY_COMPAT to ON

•

The omplace script is part of SGI's MPT, and is located under the
/nasa/sgi/mpt/mpt_version_number/bin directory

•

Syntax

For OpenMP:
setenv OMP_NUM_THREADS nthreads
omplace [OPTIONS] program args...
or
omplace -nt nthreads [OPTIONS] program args...

For MPI:
mpiexec -np nranks omplace [OPTIONS] program args...

For MPI/OpenMP hybrid:
setenv OMP_NUM_THREADS nthreads
mpiexec -np nranks omplace [OPTIONS] program args...
or
mpiexec -np nranks omplace -nt nthreads [OPTIONS] program args...

Some useful omplace options are listed below:

-b basecpu
Specifies the starting CPU number for the effective CPU list.

-c cpulist
Specifies the effective CPU list. This is a comma-separated list of CPUs or CPU
ranges.

WARNING: For omplace, a blank space is required between -c and cpulist.
Without the space, the job will fail. This is different from dplace.

Using SGI omplace for Pinning 19

-nt nthreads
Specifies the number of threads per MPI process. If this option is unspecified, it
defaults to the value set for the OMP_NUM_THREADS environment variable. If
OMP_NUM_THREADS is not set, then nthreads defaults to 1.

-v
Verbose option. Portions of the automatically generated placement file will be
displayed.

-vv
Very verbose option. The automatically generated placement file will be displayed in
its entirety.

For information about additional options, see man omplace.

Examples

For Pure OpenMP Codes Using the Intel OpenMP Library

Sample PBS script:

#PBS -lselect=1:ncpus=12:model=wes

module load comp-intel/11.1.072
setenv KMP_AFFINITY disabled

omplace -c 0,3,6,9 -vv ./a.out

Sample placement information for this script is given in the application's stout file:

omplace: placement file /tmp/omplace.file.21891
 firsttask cpu=0
 thread oncpu=0 cpu=3-9:3 noplace=1 exact

The above placement output may not be easy to understand. A better way to check the
placement is to run the ps command on the running host while the job is still running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp > placement.out
Sample output of placement.out

PSR COMMAND TIME PID PPID LWP
 0 openmp1 00:00:02 31918 31855 31918
 19 openmp1 00:00:00 31918 31855 31919
 3 openmp1 00:00:02 31918 31855 31920
 6 openmp1 00:00:02 31918 31855 31921
 9 openmp1 00:00:02 31918 31855 31922

Note that Intel OpenMP jobs use an extra thread that is unknown to the user, and does not
need to be placed. In the above example, this extra thread is running on logical core
number 19.

Using SGI omplace for Pinning 20

For Pure MPI Codes Using SGI MPT

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#Setting MPI_DSM_VERBOSE allows the placement information
#to be printed to the PBS stderr file

setenv MPI_DSM_VERBOSE

mpiexec -np 8 omplace -c 0,3,6,9 ./a.out

Sample placement information for this script is shown in the PBS stderr file:

MPI: DSM information
MPI: using dplace
grank lrank pinning node name cpuid
 0 0 yes r144i3n12 0
 1 1 yes r144i3n12 3
 2 2 yes r144i3n12 6
 3 3 yes r144i3n12 9
 4 0 yes r145i2n3 0
 5 1 yes r145i2n3 3
 6 2 yes r145i2n3 6
 7 3 yes r145i2n3 9

In this example, the four processes on each node are evenly distributed to the two sockets
(CPUs 0 and 3 are on the first socket while CPUs 6 and 9 on the second socket) to
minimize contention. If omplace had not been used, then placement would follow the rules
of the environment variable OMP_DSM_DISTRIBUTE, and all four processes would have
been placed on the first socket -- likely leading to more contention.

For MPI/OpenMP Hybrid Codes Using SGI MPT and Intel OpenMP

Proper placement is more critical for MPI/OpenMP hybrid codes than for pure MPI or pure
OpenMP codes. The following example demonstrates the situation when no placement
instruction is provided and the OpenMP threads for each MPI process are stepping on one
another which likely would lead to very bad performance.

Sample PBS script without pinning:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

Using SGI omplace for Pinning 21

setenv OMP_NUM_THREADS 2

mpiexec -np 8 ./a.out

There are two problems with the resulting placement shown in the example above. First,
you can see that the first four MPI processes on each node are placed on four cores
(0,1,2,3) of the same socket, which will likely lead to more contention compared to when
they are distributed between the two sockets.

MPI: MPI_DSM_DISTRIBUTE enabled
grank lrank pinning node name cpuid
 0 0 yes r212i0n10 0
 1 1 yes r212i0n10 1
 2 2 yes r212i0n10 2
 3 3 yes r212i0n10 3
 4 0 yes r212i0n11 0
 5 1 yes r212i0n11 1
 6 2 yes r212i0n11 2
 7 3 yes r212i0n11 3

The second problem is that, as demonstrated with the ps command below, the OpenMP
threads are also placed on the same core where the associated MPI process is running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 0 a.out 00:00:02 4098 4092 4098
 0 a.out 00:00:02 4098 4092 4108
 0 a.out 00:00:02 4098 4092 4110
 1 a.out 00:00:03 4099 4092 4099
 1 a.out 00:00:03 4099 4092 4106
 2 a.out 00:00:03 4100 4092 4100
 2 a.out 00:00:03 4100 4092 4109
 3 a.out 00:00:03 4101 4092 4101
 3 a.out 00:00:03 4101 4092 4107

Sample PBS script demonstrating proper placement:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load mpi-sgi/mpt.2.04.10789
module load comp-intel/11.1.072

setenv MPI_DSM_VERBOSE
setenv OMP_NUM_THREADS 2
setenv KMP_AFFINITY disabled

cd $PBS_O_WORKDIR

#the following two lines will result in identical placement

mpiexec -np 8 omplace -nt 2 -c 0,1,3,4,6,7,9,10 -vv ./a.out
#mpiexec -np 8 omplace -nt 2 -c 0-10:bs=2+st=3 -vv ./a.out

Using SGI omplace for Pinning 22

Shown in the PBS stderr file, the 4 MPI processes on each node are properly distributed
on the two sockets with processes 0 and 1 on CPUs 0 and 3 (first socket) and processes 2
and 3 on CPUs 6 and 9 (second socket).

MPI: DSM information
MPI: using dplace
grank lrank pinning node name cpuid
 0 0 yes r212i0n10 0
 1 1 yes r212i0n10 3
 2 2 yes r212i0n10 6
 3 3 yes r212i0n10 9
 4 0 yes r212i0n11 0
 5 1 yes r212i0n11 3
 6 2 yes r212i0n11 6
 7 3 yes r212i0n11 9

In the PBS stout file, it shows the placement of the two OpenMP threads for each MPI
process:

omplace: This is an SGI MPI program.
omplace: placement file /tmp/omplace.file.6454
 fork skip=0 exact cpu=0-10:3
 thread oncpu=0 cpu=1 noplace=1 exact
 thread oncpu=3 cpu=4 noplace=1 exact
 thread oncpu=6 cpu=7 noplace=1 exact
 thread oncpu=9 cpu=10 noplace=1 exact
omplace: This is an SGI MPI program.
omplace: placement file /tmp/omplace.file.22771
 fork skip=0 exact cpu=0-10:3
 thread oncpu=0 cpu=1 noplace=1 exact
 thread oncpu=3 cpu=4 noplace=1 exact
 thread oncpu=6 cpu=7 noplace=1 exact
 thread oncpu=9 cpu=10 noplace=1 exact

To get a better picture of how the OpenMP threads are placed, using the following ps
command:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 0 a.out 00:00:06 4436 4435 4436
 1 a.out 00:00:03 4436 4435 4447
 1 a.out 00:00:03 4436 4435 4448
 3 a.out 00:00:06 4437 4435 4437
 4 a.out 00:00:05 4437 4435 4446
 6 a.out 00:00:06 4438 4435 4438
 7 a.out 00:00:05 4438 4435 4444
 9 a.out 00:00:06 4439 4435 4439
 10 a.out 00:00:05 4439 4435 4445

Using SGI omplace for Pinning 23

Using the mbind Tool for Pinning

Summary: The mbind utility is a "one-stop" tool for binding processes and threads for MPI
and OpenMP, and hybrid applications.

The mbind utility, developed at NAS, is used for binding processes and threads to CPUs. It
works for MPI, OpenMP, or MPI+OpenMP hybrid applications, and is available under
/u/scicon/tools/bin on Pleiades.

One of the benefits of mbind is that it relieves users from the burden of learning the
complexity of each individual pinning approach for associated MPI or OpenMP libraries. It
providing a uniform usage model that works for multiple MPI and OpenMP environments.

Currently supported MPI and OpenMP libraries are listed below.

MPI:

SGI-MPT•
MVAPICH2•
INTEL-MPI•
OPEN-MPI•
MPICH2•

OpenMP:

Intel OpenMP runtime library•
GNU OpenMP library•
PGI runtime library•
Pathscale OpenMP runtime library•

Use of mbind is limited to cases where the same set of CPU lists is used for all processor
nodes, and the same number of threads is used for all processes.

WARNING: Be aware that mbind may have issues when used together with other
performance tools, such as PerfSuite.

Syntax
#For OpenMP:
mbind.x [-options] program [args]

#For MPI or MPI+OpenMP hybrid which supports mpiexec:
mpiexec -np nranks mbind.x [-options] program [args]

Information about all available options can be found in the text file
/u/scicon/tools/doc/mbind.txt on Pleiades.

Using the mbind Tool for Pinning 24

Here are a few recommended mbind options:

-cs, -cp, -cc; or -ccpulist
-cs for spread (default), -cp for compact, -cc for cyclic; -ccpulist for process
ranks (for example, -c0,3,6,9). CPU numbers in the cpulist are relative within a
cpuset if present.
Note that the -cs option will spread the processes and threads among the physical
cores to minimize various resource contentions, and is usually the best choice for
placement.

-nn
Number of processes per node.

-tn
Number of threads per process. The default value is given by the
OMP_NUM_THREADS environment variable.

-vn
Verbose flag; print some useful information. [n] controls the level of details. Default is
n=0 (OFF).

Examples

For Pure OpenMP Codes Using Intel OpenMP Library

Sample PBS script:

#PBS -l select=1:ncpus=12:model=wes
#PBS -l walltime=0:5:0

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

mbind.x -cs -t4 -v ./a.out

The 4 OpenMP threads are spread (with the -cs option) among 4 physical cores in a node,
as shown in the application's stdout:

host: r211i0n5, ncpus 24, nthreads: 4, bound to cpus: {0,3,6,9}
The proper placement is further demonstrated in the output of the ps command below:

r211i0n5% ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 9 a.out 00:02:06 849 711 849
3 a.out 00:00:00 849 711 850

 3 a.out 00:02:34 849 711 851
 0 a.out 00:01:47 849 711 852
 6 a.out 00:01:23 849 711 853

Using the mbind Tool for Pinning 25

Note that Intel OpenMP creates an extra thread, which is unknown to the user and does not
need to be placed. In this example, this extra thread (thread id 850) is running on the same
core (core 3) as thread 851. Since this extra thread does not do any work, it will not
interfere with the other threads.

For Pure MPI Codes Using SGI MPT

WARNING: mbind.x overwrites the placement initially performed by MPT's mpiexec. The
placement output from MPI_DSM_VERBOSE (if set) most likely is incorrect and should be
ignored.
Sample PBS script:

#PBS -l select=1:ncpus=12:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#setenv MPI_DSM_VERBOSE

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -n4 -v ./a.out

On each of the two nodes, 4 MPI processes are spread among 4 physical cores (0,3,6,9),
as shown in the application's stdout:

host: r213i2n12, ncpus 24, process-rank: 0, bound to cpu: 0
host: r213i2n12, ncpus 24, process-rank: 1, bound to cpu: 3
host: r213i2n12, ncpus 24, process-rank: 3, bound to cpu: 9
host: r213i2n12, ncpus 24, process-rank: 2, bound to cpu: 6
host: r213i2n13, ncpus 24, process-rank: 4, bound to cpu: 0
host: r213i2n13, ncpus 24, process-rank: 5, bound to cpu: 3
host: r213i2n13, ncpus 24, process-rank: 6, bound to cpu: 6
host: r213i2n13, ncpus 24, process-rank: 7, bound to cpu: 9

For MPI+OpenMP Hybrid Codes Using SGI MPT and Intel OpenMP

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#setenv MPI_DSM_VERBOSE

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -n4 -t2 -v ./a.out

Using the mbind Tool for Pinning 26

On each of the two nodes, the 4 MPI processes are spread among the physical cores. The
2 OpenMP threads of each MPI process run on adjacent physical cores as seen in the
application's stdout:

host: r215i2n12, ncpus 24, process-rank: 4, nthreads: 2, bound to cpus: {0-1}
host: r215i2n12, ncpus 24, process-rank: 6, nthreads: 2, bound to cpus: {6-7}
host: r215i2n12, ncpus 24, process-rank: 5, nthreads: 2, bound to cpus: {2-3}
host: r215i2n12, ncpus 24, process-rank: 7, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 0, nthreads: 2, bound to cpus: {0-1}
host: r215i2n11, ncpus 24, process-rank: 2, nthreads: 2, bound to cpus: {6-7}
host: r215i2n11, ncpus 24, process-rank: 3, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 1, nthreads: 2, bound to cpus: {2-3}

For MPI+OpenMP Hybrid Codes Using MVAPICH2 and Intel OpenMP

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -n4 -t2 -v ./a.out

#If you use mpirun_rsh instead of mpiexec
#use the following

mpirun_rsh -np 8 -hostfile $PBS_NODEFILE \
mbind.x -cs -n4 -t2 -v2 ./a.out

The application's stdout in this example is very similar to that in the previous MPT/Intel
OpenMP example.

For MPI+OpenMP Hybrid Codes Using Intel MPI and Intel OpenMP

The Intel MPI library automatically pins processes to CPUs to prevent unwanted process
migration. If you find that the placement done by the Intel MPI library is not optimal, you can
use mbind to do the pinning instead.

WARNING: Note that in order for mbind to work with the Intel MPI library, the internal
pinning mode of the library must be turned off explicitly by setting the environment variable
I_MPI_PIN to 0.
Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

Using the mbind Tool for Pinning 27

module load comp-intel/11.1.072
module load mpi-intel/4.0.2.003

setenv I_MPI_PIN 0

cd $PBS_O_WORKDIR

mpdboot --file=$PBS_NODEFILE --ncpus=1 --totalnum=`cat $PBS_NODEFILE | \
 sort -u | wc -l` --ifhn=`head -1 $PBS_NODEFILE` --rsh=ssh \
 --mpd=`which mpd` --ordered

mpiexec -ppn 4 -np 8 mbind.x -cs -n4 -t2 -v ./a.out

mpdallexit

For the above job, the following placement is seen in the application's stdout:

host: r215i2n11, ncpus 24, process-rank: 0, nthreads: 2, bound to cpus: {0-1}
host: r215i2n11, ncpus 24, process-rank: 1, nthreads: 2, bound to cpus: {2-3}
host: r215i2n11, ncpus 24, process-rank: 3, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 2, nthreads: 2, bound to cpus: {6-7}
host: r215i2n12, ncpus 24, process-rank: 5, nthreads: 2, bound to cpus: {2-3}
host: r215i2n12, ncpus 24, process-rank: 4, nthreads: 2, bound to cpus: {0-1}
host: r215i2n12, ncpus 24, process-rank: 7, nthreads: 2, bound to cpus: {8-9}
host: r215i2n12, ncpus 24, process-rank: 6, nthreads: 2, bound to cpus: {6-7}

This can be confirmed by running the following ps command on the running nodes. For
clarity, the extra OpenMP threads created by the Intel OpenMP (which don't do any work)
are removed from the output.

r215i2n11% ps -C hybrid_intelmpi -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 6 a.out 00:00:12 44698 44696 44698
 7 a.out 00:00:12 44698 44696 44715
 2 a.out 00:00:12 44699 44695 44699
 3 a.out 00:00:12 44699 44695 44711
 8 a.out 00:00:12 44700 44697 44700
 9 a.out 00:00:12 44700 44697 44713
 0 a.out 00:00:12 44701 44694 44701
 1 a.out 00:00:12 44701 44694 44717

If I_MPI_PIN is not set to 0 in the PBS script, then mbind.x prints out identical placement
results, as in the case where I_MPI_PIN is set to 0 but the ps command shows that some
OpenMP threads "step on" one another.

r215i2n11% ps -C hybrid_intelmpi -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
3 a.out 00:00:12 44185 44182 44185

 3 a.out 00:00:12 44185 44182 44198
 6 a.out 00:00:19 44186 44183 44186
 7 a.out 00:00:12 44186 44183 44202
9 a.out 00:00:12 44187 44184 44187

 9 a.out 00:00:12 44187 44184 44200

Using the mbind Tool for Pinning 28

 0 a.out 00:00:19 44188 44181 44188
 1 a.out 00:00:12 44188 44181 44204

The mbind utility was created by NAS staff member Henry Jin.

Using the mbind Tool for Pinning 29

Instrumenting your Fortran Code to Check Process/Thread
Placement

Summary: Pinning, the binding of a process or thread to a specific core, can improve the
performance of your code. To check whether your Fortran code has been successfully
pinned, use the C code, mycpu.c, found below.

The MPI function mpi_get_processor_name and the Linux C function sched_getcpu
can be inserted into your source code to check process and/or thread placement.

The MPI function mpi_get_processor_name returns the hostname an MPI process is
running on (to be used for MPI and/or MPI+OpenMP codes only). The Linux C function
sched_getcpu returns the processor number the process/thread is running on.

If your source code is written in Fortran, you can use the C code, mycpu.c, below, which
allows your Fortran code to call sched_getcpu.

C Program mycpu.c

#include <utmpx.h>
int sched_getcpu();

int findmycpu_ ()
{
 int cpu;
 cpu = sched_getcpu();
 return cpu;
}

Compile mycpu.c as follows to produce the object file mycpu.o:

pfe20% module load comp-intel/2011.2
pfe20% icc -c mycpu.c

The example below demonstrates how to instrument an MPI+OpenMP source code with
the above functions. The added lines are shown in red.

 program your_program
 use omp_lib
...
 integer :: resultlen, tn, cpu
 integer, external :: findmycpu
 character (len=8) :: name

 call mpi_init(ierr)
 call mpi_comm_rank(mpi_comm_world, rank, ierr)
 call mpi_comm_size(mpi_comm_world, numprocs, ierr)

Instrumenting your Fortran Code to Check Process/Thread Placement 30

 call mpi_get_processor_name(name, resultlen, ierr)
!$omp parallel

 tn = omp_get_thread_num()
 cpu = findmycpu()
 write (6,*) 'rank ', rank, ' thread ', tn,
 & ' hostname ', name, ' cpu ', cpu
.....
!$omp end parallel
 call mpi_finalize(ierr)
 end

Compile your instrumented code as follows:

pfe20% module load comp-intel/2011.2
pfe20% module load mpi-sgi/mpt.2.06a67
pfe20% ifort -o a.out -openmp mycpu.o your_program.f -lmpi

Sample PBS script

The PBS script below shows an example for running the hybrid MPI+OPenMP code across
two nodes, with 2 MPI processes per node and 4 OpenMP threads per process, and using
mbind to pin the processes and threads.

#PBS -lselect=2:ncpus=12:mpiprocs=2:model=wes
#PBS -lwalltime=0:10:00

cd $PBS_O_WORKDIR

module load comp-intel/2011.2
module load mpi-sgi/mpt.2.06a67

mpiexec -np 4 mbind.x -cs -n2 -t4 -v ./a.out

Here is a sample output:

These 4 lines are generated by mbind only if you have included the -v option:
host: r212i1n8, ncpus 24, process-rank: 0, nthreads: 4, bound to cpus: {0-3}
host: r212i1n8, ncpus 24, process-rank: 1, nthreads: 4, bound to cpus: {6-9}
host: r212i1n9, ncpus 24, process-rank: 2, nthreads: 4, bound to cpus: {0-3}
host: r212i1n9, ncpus 24, process-rank: 3, nthreads: 4, bound to cpus: {6-9}

These lines are generated by your instrumented code:
rank 0 thread 0 hostname r212i1n8 cpu 0
rank 0 thread 1 hostname r212i1n8 cpu 1
rank 0 thread 2 hostname r212i1n8 cpu 2
rank 0 thread 3 hostname r212i1n8 cpu 3
rank 1 thread 0 hostname r212i1n8 cpu 6
rank 1 thread 1 hostname r212i1n8 cpu 7
rank 1 thread 2 hostname r212i1n8 cpu 8
rank 1 thread 3 hostname r212i1n8 cpu 9
rank 2 thread 0 hostname r212i1n9 cpu 0

Instrumenting your Fortran Code to Check Process/Thread Placement 31

rank 2 thread 1 hostname r212i1n9 cpu 1
rank 2 thread 2 hostname r212i1n9 cpu 2
rank 2 thread 3 hostname r212i1n9 cpu 3
rank 3 thread 0 hostname r212i1n9 cpu 6
rank 3 thread 1 hostname r212i1n9 cpu 7
rank 3 thread 2 hostname r212i1n9 cpu 8
rank 3 thread 3 hostname r212i1n9 cpu 9

Note that these lines in your output may be listed in a different order.

This approach was suggested by NAS SGI analyst Ken Taylor.

Instrumenting your Fortran Code to Check Process/Thread Placement 32

	Table of Contents
	Process Pinning
	Process/Thread Pinning Overview
	Using SGI's dplace Tool for Pinning
	Using Intel OpenMP Thread Affinity for Pinning
	Using SGI MPT Environment Variables for Pinning
	Using SGI omplace for Pinning
	Using the mbind Tool for Pinning
	Instrumenting your Fortran Code to Check Process/Thread Placement

